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Abstract

This paper compares linear programming and stable marriage approaches to the

assignment problem under conditions of uncertainty. Robust solutions should exhibit

reduced variability in the presence of one or more additional constraints.

Several variations of each approach are compared with respect to solution qual-

ity, as measured by the overall social welfare among Officers and Assignments, and

robustness as measured by the number of changes after a number of randomized

perturbations. We examine the contrasts between these methods in the context of

assigning Army Officers among a set of identified assignments. Additional constraints

are modeled after realistic scenarios faced by Army assignment managers, with pa-

rameters randomized.

The Pareto efficient approaches, relative to these measures of quality and robust-

ness, are identified and subjected to a regression analysis. The coefficients of these

models provide insight into the impact the different scenarios under study, as well as

inform any trade-off decisions between Pareto-optimal approaches.
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A SCENARIO-BASED PARAMETRIC ANALYSIS OF STABLE MARRIAGE

APPROACHES TO THE ARMY OFFICER ASSIGNMENT PROBLEM

I. Introduction

Every day, HRC executes distribution, strategic talent management, per-
sonnel programs and services Army wide in order to optimize Total Force
personnel readiness and strengthen an agile and adaptive Army.

–Mission of the United States Army Human Resources Command [1]

1.1 Background

One of the missions of the United States Army’s Human Resources Command

(HRC) is to annually manage the assignment and distribution of 92,627 active duty

Officers and 378,193 active duty Enlisted personnel to Army and Joint organization

around the world. While most personnel are assigned to a large unit or geographic

location for a period between three to four years, military necessity requires the

periodic balancing of national security and professional development requirements

with the personal desires of Soldiers and their Families. [2]

Army Officer assignments may be difficult to address, given the many concerns

surrounding assignments, both from the perspective of the Army and from Officers.

While current practice involves Officers submitting personal preferences, ordinal list-

ings communicating their most desirable assignments, assignment managers at HRC

manually develop assignment slates or matchings of Officers to assignments.
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The Army invests heavily in the training, education and experiences of its leaders,

but many are under no obligation to stay, except for the desire to serve or financial

incentive of cliff retirement. Desirable assignments can prove vital to career progres-

sion, family well-being, and job satisfaction. A transparent and fair allocation of jobs

supports the Army mission.

Before work on an assignment slate can start, HRC must first identify Officers who

will require a new assignment, either to support the Army Manning Guidance or due

to the professional development requirements described in Army Regulation 600-3,

The Army Personnel Development System. Assignment Managers Officers to develop

a supply of Officers available for moves during the planned period or assignment cy-

cle. Units currently under-filled due to attrition (retirements, separations, etc.) or

projected moves of Officers then submit requisitions for replacement Officers. These

requisitions are collated and prioritized based upon the strategy developed by the

Army Manning Guidance. Validated requisitions serve as a starting point for assign-

ment managers to develop their assignment slate; in general these are the assignments

that they must fill.

Currently, assignment managers have few tools with which they can develop qual-

ity assignment slates. Instead, they toil over spreadsheets, manually weighing Officer

preferences with Army requirements. Changes occurring late in the assignment pro-

cess, such as a directed assignment, the rejection of an Officer from a Joint assignment,

or the diagnosis of a serious illness or injury can require the assignment manager to

either rework large portions of a slate, change assignment orders already issued, or

accept a solution of lower quality than could otherwise be achieved. This research

seeks to provide an algorithmic process for assignment managers to develop quality

assignment slates that are robust to the vagaries of life in the presence of uncertainty.

2



1.2 Problem Statement

We have a sacred trust to take care of Soldiers in every component. To-
gether we will make the Army stronger.

–MG Thomas C. Seamands, 5 June 2015

Commander, United States Army Human Resources Command [3]

The Army Officer assignment process is critical to the success of the Army. The

ideal assignment process balances the needs of the Army with the career goals and

preferences of the Officer. The size of the problem for a typical assignment manager

can easily preclude manual assignment processes. Automated processes generally

involves some mathematical representation of the problem which is usually solved

using a linear programming formulation.

Mathematical programs yield assignment strategies optimal with respect to some

solution characteristics defined in an objective function. Unfortunately initial so-

lutions may not be final solutions, as changes to assignment demands and the life

situations of Officers potentially change the suggested solution.

Linear programming algorithms are chaotic; small changes to inputs, such as an

assignment no longer available, the addition of new assignments, or the restriction

or directed assignment of an Officer to a subset of assignments, may cause dramatic

changes in the output [4]. Implementation of the new assignment strategy indicated

may necessitate massive changes to assignment orders. A practical assignment process

cannot tolerate dramatic changes and the resultant turmoil to Soldiers and their

Families.

This work examines alternative approaches for the Army Officer assignment prob-

lem. The Gale-Shapley algorithm is examined with respect to its applicability to

the assignment problem, the quality of solutions compared to linear programming,

3



and the robustness of the assignment methodology with respect to changes to the

inclusion of additional assignment constraints.

1.3 Approach

First, we develop comparable formulations for an appropriate instance of the As-

signment Problem, with parameters drawn from a representative case provided by the

United States Army Human Resources Command (HRC). Linear Programming (LP)

and Stable Marriage approaches are used to develop initial solutions to a boolean

programming assignment model. This model should seek to minimize the total pref-

erences, or maximize the social welfare, of both Officers and Assignments. The Gale-

Shapley Stable Marriage algorithm provides a stable solution. These initial solutions

are stored, and the underlying model randomly perturbed through the addition of one

or more new constraints, grounded in realistic scenarios faced by Assignment Man-

agers at HRC. New optimal solutions are found based using warm and cold start L as

well as several Stable Marriage variants. The results from each result are compared

with respect to overall solution quality as well as the number of changed decision

variables from the initial to final solution. Various implementations of the Stable

Marriage Algorithm are examined with respect to both solution quality and the num-

ber of changes, or robustness of the approach. New insight is gleaned into when each

approach might be preferred.

1.4 Assumptions

All models are wrong but some are useful.

–George E. P. Box [5]

4



Individual preferences provided for each Officer represent their ordinal rankings of

assignments to which they might feasibly be assigned. These preference lists should

be feasibly complete, in that for each officer the rankings are complete over the subset

of all assignments for which they are eligible. The errors present in the model data

provided, are assumed to be transcription errors as discussed in Appendix A.

While the use of ordinal numbers as cost coefficients implicitly infers a linear

preference relationship where another monotonic function might be more appropriate,

the benefit of more accurate value functions might not be commensurate with the costs

of eliciting those preferences. Preferences might be revealed using decision analysis

techniques, such as allocating a fixed budget of preference-weighting points across a

set of assignments, such as those show in Figure 1. These hypothetical preference

function show some alternative distributions of 120 “points,” shown on the y-axis,

over 15 possible assignments, on the x-axis, while retaining the same preference order.

However, given the observed errors in a relatively simple ordinal ranking system, as

documented in Appendix A, the expenditure of resources to ensure proper execution

of more complex elicitation techniques will likely be high. Given that the Gale-

Shapely algorithm provides results with ordinal inputs, we assume that such inputs

are sufficient to represent the preference values of our officer population. Further

analysis may illuminate the degree to which greater fidelity can improve an LP-derived

optimal solution, as well as examine the costs associated with such improvements.

1.5 Summary

This research provides HRC Assignment Managers algorithmic processes by which

high quality assignment slates could be rapidly generated while providing robust

Officer-to-assignment slates that do not incur many changes when reacting to last

minute perturbations (e.g. an assignment being canceled, an officer becoming un-

5



Figure 1. Theoretical Preference Functions of Officers over Potential Assignments

available for assignment). It may find further application to other matching prob-

lems in which there is a high cost or a long lead-time to implement changes to an

incumbent solution. With higher penalties to changes in individual assignments, sta-

bility may be a desired characteristic in solutions that may not be incorporated via

a single-dimensional fitness function. Such applications may include facility place-

ment problems, the assignment of contracts, and the commitment of forces in combat

models.
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II. Literature Review

We [previously managed] people in the Army basically by two variables:
what is your rank and what is your occupational specialty... Now we have
a million folks that we can tap into and get them on the field in the right
position, in the right place at the right time.

–LTG James McConville, 5 October, 2016
Deputy Chief of Staff for Personnel

Headquarters, United States Army [6]

2.1 Overview

This chapter reviews previously published literature on solution methodologies to

the bipartite assignment problem. Solution approaches to the bipartite assignment

problem can be roughly divided between those with a focus purely upon optimization

and those approaches that utilize some form of the Gale-Shapley Stable Marriage

Algorithm. We then explore previous applications of the Stable Marriage Algorithm,

both in general as well as to specific military applications.

Of note, male and female pronouns noting the perspective of some arbitrary Army

Officer are used throughout the discussion herein with neither preference nor prejudice

towards any gender. Within this work and in context of the stable marriage algo-

rithm, the terms male and female represent arbitrary labels established in applicable

scientific literature for the two sets of a bipartite matching problem.

2.2 Bipartite Assignment Problem

Matching problems arise frequently. Ahuja [7] describes the classical bipartite

matching problem as a special instance of the assignment problem wherein the ob-

jects are partitioned into two mutual exclusive groups. The two sets of interest are

7



sometimes called men and women, noted here as sets M and W respectively, each

with complete preferences over the members of the other set such that the value or

cost of any pairing can be evaluated. Bazaraa, Jarvis and Sherali develop a math-

ematical form of the assignment problem, expressed in terms of assigning m males

(officers) to m females (assignments), shown in Equation (1) [8].

minimize
m∑
i=1

m∑
j=1

cijxij

subject to
m∑
j=1

xij = 1, i = 1, ...,m

m∑
i=1

−xij = −1, j = 1, ...,m

xij ∈ {0, 1}, i, j = 1, ...,m

(1)

Here cij is the cost or preference value associated with the marriage or pairing of

man i to woman j and xij is a binary decision variable associated with the inclusion

(i.e., xij = 1) or exclusion (i.e., xij = 0) of that marriage from a matching. Unequal

cardinalities of sets M and W are typically handled by the inclusion of placeholder

indices or dummy variables that represent a null partner with an appropriate null

valued assignment contribution to the objective.

The minimization formulation would be appropriate for cij given in terms of costs.

If benefits are instead used, a maximization formulation is more appropriate. How-

ever, it should be noted that these preference values are for each unique pair, and so

they reflect some combination of male and female preferences. In other words, a man

and a woman are allowed to have different preference values for each other; cij-values

should reflect both preferences in that pair’s contribution to the objective function.

A member of the solution is a pair formed from a single object from each group.

Therefore, any solution S is a collection of mutually exclusive and collectively exhaus-

tive pairs (m,w) ∈ S such that m ∈M,w ∈ W . A complete solution to the bipartite
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matching problem is called a matching, which forms a bijection between the two sets

M and W , herein labeled arbitrarily as men and women, respectively [7].

If the structure given in Equation (1) remains, we can simplify the expressions in

vector-matrix form to that in Equation (2).

minimize f(x)

subject to Ax = b where b =

 1

-1


x ≥ 0

(2)

While the quality of a matching can be defined classically via a fitness function,

such as the coefficients given in Equation (1), a more general scoring of a solution can

be provided by some f(x). The function f scores any solution, represented here by

the vector of binary decision variables x. Generally, f is assumed to be linear, which

inherently assumes independent contributions of different matchings to the objective

function.

Another approach to evaluating the relative quality of matchings is to use a list

of ordinal preferences. Although Dean and Swar’s work [9] does include the use

ordinal preferences in allocation problems, not much other work found in the literature

systematically addresses the comparative utility of ordinal value preference data to

actual objective cost, preference, or value functions that are defined to have interval

or ratio measures. Dean and Swar [9] introduced the generalized stable allocation

problem, or GSAP, dealing with ordinal preferences, but they did not juxtapose the

relative quality of solutions obtained through their proposed method to comparative

instances of a generalized assignment problem with either ordinal cost components or

representative costs. It appears to be an open question in the literature to establish,

either empirically or theoretically, the marginal value of ratio preference values over
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ordinal preference values.

Some literature ascribes value to other measures of matchings rather than just

fitness derived from costs or preferences. Kimbrough and Kuo [10], in developing

multiobjective fitness functions for matching heuristics, describe measures of equity

and social welfare. These measures assign additional value to matchings that are

somehow more “fair” to members of each gender. They define equity as the sum of

absolute differences between the preferences of each match, and social welfare as the

sum of ordinal preferences of each match [10].

To illustrate the difference between social welfare and equity, suppose there are

two men, {m1,m2} and two women, {w1, w2} with both men and women uniformly

preferring 1 to 2. We can see in Table 1 that while these two simple matchings have

similar social welfare scores, their levels of equity differ. While the nomenclature

connotes some meaning, care should be exercised to determine the applicability of

these measures and their correct physical interpretation given some problem instance

and application.

More commonly examined than social welfare and equity is the notion of stability.

A matching S is deemed unstable if and only if ∃(m,w) /∈ S such that both m and

w prefer each other to their respective partners within S [11]. Such a pair (m,w) is

called a blocking pair [9]. A stable solution admits no blocking pairs. Although the

literature on exact thresholds to define “nearly stable” solutions [12] is sparse, the

stability of S is measured by the total number of blocking pairs it contains [10]. For

any set of ordinal male and female preferences, there exists a stable matching that

Table 1. Comparison of Social Welfare, Equity and Stability

Social Welfare Equity Stability

{(m1, w1), (m2, w2)} 2 + 4 = 6 0 + 0 = 0 0

{(m1, w2), (m2, w1)} 3 + 3 = 6 1 + 1 = 2 1
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can be found in quadratic time [7]. In Table 1, we can see that, whereas the first

match is stable, the second match is not.

2.3 Linear Programming Based Solutions to the Assignment Problem

The minimum weighted matching problem on a bipartite graph has some special

properties that can be leveraged. Assignment problems, as special cases of Trans-

portation problems, can yield bases that are unimodular [8]. In the matrix formulation

of the assignment problem given in Equation (2), the matrix A may be totally uni-

modular, in that every square non-singular submatrix is unimodular. When A is to-

tally unimodular and the right-hand-side is integer-valued, any basis will yield integer-

valued decision variables. In other words, all extrema of the region {x|Ax = b} have

integer valued coordinates. Integrality constraints can then be relaxed when applying

LP solution methods and an LP-based method will attain the optimal solution to the

binary integer program, as long as any additional constraints retain this property of

A.

Unfortunately, the addition of other side constraints may lead to a matrix A that

is not totally unimodular. In this case polynomial time algorithms may fail to provide

integer-valued solutions to the LP relaxation. For instance, without transformation

into an equivalent form, the Hungarian Algorithm cannot be applied and other poly-

nomial time algorithms (e.g. Karmarkar’s projective algorithm or the Affine Scaling

algorithm) cannot solve the linear programming relaxation with a guarantee that

the resultant optimal solution will be integral [8]. Other iterative methods of solving

integer and boolean mathematical programs exist using cutting planes or branch-and-

bound methods, and heuristic search methods forego a proof of optimality altogether.

These methods can be used in concert and are typically integrated in commercial

optimization software such as Gurobi [13] when solving combinatorial optimization
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problems.

2.4 Stable Marriage Algorithm

The stable marriage algorithm, also called either the Gale-Shapley (GS) or De-

ferred Acceptance algorithm, is a heuristic that attempts to find a stable solution to

the bipartite assignment problem, and is well studied in literature [14]. While it seeks

to find a high quality solution, Gale and Shapley originally proposed it to address the

college admissions process, a matching market with incomplete information, in order

to reduce uncertainty for both colleges and applicants. In building the algorithm,

Gale and Shapley reduced the problem to examining potential marriages between an

equal number of men and women, each with ordinal or ranked preferences [15]. The

bipartite assignment problem described in Section 2.2 is therefore often referred to as

the stable marriage problem.

Within the context of the stable marriage approach to the assignment problem,

the two sets of interest are commonly called men and women, noted here as M and W

respectively, each with complete preferences over the members of the other set. As an

assignment problem, a solution S is a collection of mutually exclusive and collectively

exhaustive pairs (m,w) such that m ∈ M,w ∈ W . The goal of the Stable Marriage

Algorithm, described in Algorithm 1, is to find a stable solution [15].

The Stable Marriage Algorithm requires as input two matrices each representing

the ordinal ranking of members of one set on the other, i.e. men on women and vice

versa [7]. These are represented in Algorithm 1 as prefm and prefw respectively.

Alternatively, these may be viewed as a single matrix of ordered pairs [15], or as a

set of preference vectors for each element [7], without loss of generality in either case.

However stored, the preference information is used at each step in the algorithm.

At the first step of each iteration, the manner in which we select m from the set
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Algorithm 1 Pseudocode for the Gale-Shapely Stable Marriage Algorithm

M is the set of Men, W the set of Women
for m ∈M,w ∈ W :
prefm, prefw are preference lists for each men, women
S = ∅; the pairs (m,w) in the current matching

procedure Stable Marriage(prefm, prefw)
while ∃m ∈Ms.t.(m,w) /∈ S for some w ∈ W do

m← select m s.t. m /∈ p, ∀p ∈ S
w ← pop(prefm)
p← p ∈ S where w ∈ p
if w /∈ p for some pair p ∈ S then

S ← (m,w)
else if w prefers m to current match then

remove pair p from S
S ← (m,w)

else
do nothing

of currently unmatched men may alter the final solution obtained, and we will later

categorize the variants of Stable Marriage in part by whether we use a single arbitrary-

but-consistent lexicographic order or we sample from the available men randomly. In

any case, the GS algorithm will always return a stable solution [7].

McVitie and Wilson [16] developed a recursive algorithm that provides identical

results to the GS algorithm, but the authors note that the larger consumption of

memory would likely only result in moderate improvements in the algorithm’s per-

formance with respect to required computational effort. For test problems of size

m = 50, they demonstrated a 30% improvement of the recursive algorithm over the

GS algorithm [16]. However, these results with ALGOL, a functional programming

language very supportive of recursion, are likely not achievable with Microsoft’s Vi-

sual Basic for Applications (VBA), which trades-off features favorable for recursion

for those more favorable to iterative methods [17].

McVitie and Wilson [16] also modify the recursive algorithm in order to enumerate
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all stable solutions rather than just the single solution optimal to the proposing

set (i.e., male optimal). An interesting note is that with the female optimal stable

solution known, we can restrict our search since men can never be worse off than they

are in the female optimal solution without constructing a blocking pair [16]. However,

the female optimal can be found directly by interchanging the roles of the proposals.

Therefore, an implementation of this could be made to find first both the male and

female solutions before iteratively generating additional stable solutions.

When preferences contain some level of indifference, that is when one person has

the same utility for a match with multiple partners, the algorithm can accommodate

with an extended definition of blocking pair. Manlove [18] explored two variants of

the Stable Marriage problem with ties (SMT). A weakly stable matching occurs when

there are no blocking pairs that are strictly preferred, while a strongly stable matching

admits no weakly preferred blocking pairs.

2.5 Previous Applications of the Stable Marriage Algorithm

Perhaps the best known application of the Stable Marriage Algorithm is its use

by the National Resident Matching Program (NRMP). The NRMP implements the

algorithm to provide stable matchings of medical residents to hospital residency pro-

grams and assurances to each program that their slots would be filled, without re-

quiring medical students to respond in an unreasonably short time [19]. The success

of this particular application was a driving force behind the awarding of the 2012

Nobel Prize in Economics to Roth and Shapely [20]. Similar uses of deferred ac-

ceptance algorithms are noted for several centralized labor markets in the medical

community [21].

Given the original language of the Stable Marriage Algorithm in terms of college

applications [15], it is unsurprising that its use in education has spread. Leveraging
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the literature on matching markets, the Ministry of Education for Singapore utilizes

the Stable Marriage Algorithm to match students to secondary schools using only

student preferences and scores on the Primary School Leaving Examination [11]. The

distribution of students among New York City high schools turned from lottery to a

deferred acceptance algorithm in 2003 [22]. In 2005, Boston public schools adopted a

deferred acceptance algorithm to assign students based upon parent preferences while

balancing individual school requirements [23].

Applications of the Stable Marriage algorithm may also be found in modern in-

formation technology. A generalized version of the GS algorithm provides a rapid

method to establish a matching between users and servers for content delivery net-

works, such as Akamai or Netflix. In content delivery networks, there is very rapid

change of preference orderings and constraints due to time-varying network conges-

tion as well as topological network changes over time. The algorithm provides a

matching, stable over a short time horizon, of geographic clusters of users to network

nodes that function as content servers [24].

The Stable Marriage Algorithm has begun to receive attention for its potential

military applications as well. Hill et al. [4] applied the Stable Marriage Algorithm to

the nuclear posture review, assigning a notional non-homogeneous supply of nuclear

weapons to a list of targets. They observed chaotic behavior of LP-based solutions

in dynamic-systems not seen in stable solutions, noting that changes may not be de-

sirable when “adopting a plan already under execution” [4]. More recently, Naeem

and Masood [25] of the Pakistani Military College of Signals explored the use of the

Stable Marriage Algorithm to model detected threats and assign to them a probable

target among some set of defended assets. This model enabled a larger threat evalu-

ation and weapon assignment process by quickly providing a robust estimate of likely

threat behavior [25].
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In a human resources context, there have been cases of LP-based approaches in the

services. In the United States Air Force, Wylie sought to optimize the assignment

of so-called rated officers, those with aeronautical credentials. Wylie [26] utilized

an assignment formulation that could be solved as a network flow with the rou-

tines available in SAS. Recently, Lepird [27] proposed further research into adapting

algorithmic approaches to Air Force personnel assignments, using either an LP for-

mulation or the Stable Marriage Algorithm. Within the United States Army, Sonmez

and Switzer [28] used an agent-based model with an Officer-optimal stable solution,

where side contracts could be chosen to receive a first choice. While the research

primarily investigated the matching with contracts paradigm, the underlying model

for their agents utilized a deferred acceptance algorithm.
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III. Methodology

Although the Army’s industrial-aged personnel management system is ad-
equate today, it will not support the Army’s needs in 2025 and beyond.
[We] recognize this and are calling for a human capital management trans-
formation that will enable our effort to meet future strategic challenges
more effectively.

–Lieutenant General Robert B. Brown
Commander, United States Army Combined Arms Center

Talent Management Concept of Operations
for Force 2025 and Beyond [29]

3.1 Introduction

Our methodology consists of comparing various implementations of LP and the GS

algorithm both before and after an incumbent solution of each method is subjected

to additional constraints and the same approach reapplied.

3.2 Provenance of the Exemplar Model Data

Given the common practice among Army assignment managers and the logisti-

cal burdens in eliciting more precise value functions from a large pool of personnel,

the base models we build utilize readily available ordinal preferences for each Of-

ficer. We sourced both the preference data and officer data for these base models

from anonymized exemplar data provided by HRC. Development of realistic assign-

ment scenarios led to the additional constraints under review. While selection of

the scenario was experimentally controlled, the selection of the affected Officers and

assignments were randomized.

The data received from HRC required cleaning before use, yielding preferences for

161 Officers over 139 assignments. Some preferences were incomplete, or contained
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errors in rankings. The steps taken to clean the data are listed in detail in Appendix

A. Immediately, one Officer and assignment pair could be removed due to a unique

training pipeline resulting in a single feasible assignment connecting an Officer’s prior

selection to enter that program. Dividing the available assignments into those consid-

ered “key and developmental” (KD), and dividing the Officers into those who require

a KD assignment and those who do not, shows that since there are 86 non-KD Officers

but only 71 KD assignments, we expected that every KD assignment should go to an

Officer requiring a KD assignment.

3.3 Model Formulation

Sets.

Let the set of all Officers eligible for reassignment be O , {0, 1, 2, . . . , 159}.

We partition O by whether the Officer has previously held a KD assignment for their

current grade so that OKD is the set of Officers lacking experience in a KD assignment,

and OB is the set of Officers who have already completed a KD assignment. By

inspection we see that OKD ⊆ O, OB ⊆ O and that OKD∪OB = O while OKD∩OB =

∅, thereby establishing a partition of O.

OB is the set of KD-Complete Officers , {0, 1, . . . , 71}.

OKD is the set of Officers requiring KD assignment , {72, 73, . . . , 159}.

Similarly, we construct and partition the set of available assignments, Aavailable ,

Table 2. Exemplar Data Provided by Sponsor

Type Officers Assignments

KD 86 71
Broadening 74 67

Special Training Program 1 1

Total 161 139
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{0, 1, . . . , 138} into the first 72 KD assignments and the remaining 67 broadening

(B) assignments, Aavailable = AKD ∪ AB respectively. In the current case, AKD =

{1, . . . , 72}, and AB = {73, . . . , 138} and AKD,∩AB = ∅.

We also note two basic observations regarding the respective cardinality of each

set, for this problem instance.

|O| > |Aavailable|. (3)

There are more Officers than available assignments.

|OKD| > |AKD|. (4)

There are more Officers requiring a KD assignment than there are KD assignments.

In response to the first observation, we augment the set of available assignments

with a set of “dummy” or null assignments, AD. With A = Aavailable ∪ AD = AKD ∪

AB ∪ AD such that |A| = |O|, we would interpret the assignment of an Officer to a

element of AD as the Officer not receiving any new orders and instead being deferred

to a future assignment problem.

Officer preferences are recorded as 2-dimensional list, or alternatively a matrix, as

shown in Equation (5). P is a matrix where pij is the preference value of the Officer

i for assignment j.

pij ,


Preference over set AKD, j ∈ AKD

Preference over set AB, j ∈ AB

0, otherwise.

(5)

There are two significant notes, however.
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1. Due to problem structure and how preference information is collected, these

preferences are split independently between preferences over AKD and AB.

2. In order to model indifference in LP, an average value is used. This is the

average of the values that might have been given if a strict preference would

have been required.

To illustrate the second point, we can examine the hypothetical preferences of two

Officers over a group of assignments, identical except for a single ambivalence between

two assignments. As shown in Table 3, we can see that Officer “B” is indifferent

between his top two choices of assignment (Assignments 1 and 2).

Table 3. Problematic Indifference

Officer Assignment 1 Assignment 2 . . . Assignment n

A 1 2 . . . n
B 1 (Indifferent) . . . n− 1
...

...
...

. . .

Table 4 shows the pathological example of this behavior for a large number n

assignments, with Officer B indifferent between all of the first n− 1 assignments. A

solution assigning the nth assignment to Officer “B” is a 2nd choice, while it would be

the nth for Officer “A”. With a difference of n− 2, we begin to see that the “rank” of

the least preferred assignment might be reduced by the total quantity of indifference

expressed by the Officer.

Table 4. Indifference - Pathological Example

Officer Assignment 1 . . . Assignment n− 1 Assignment n

A 1 . . . n− 1 n
B 1 (Indifferent) 2

The cumulative effect of ties within a long list, if left unchecked, may leave Officers

expressing preferences with ties at a disadvantage relative to their peers. While there
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are several ways to handle ties, such as taking the maximum or minimum value of

the tied values, as demonstrated in Table 5 we chose the average method without

prejudice towards the others, in order to construct weakly stable matchings. In our

context of assigning Officers to Assignments, the requirements of a strongly stable

match are unnecessary, and the hypothetical issues raised by Manlove [18] do not

apply.

Table 5. Indifference Expressed using the Average Method

Officer Assignment 1 Assignment 2 . . . Assignment 3

A 1 2 . . . n
B 1.5 (Indifferent) . . . n

We define yi as the year-group of Officer i. This is the cohort year that effectively

marks the year of their entry into commissioned service, adjusted for prior experience

or for unusual career advancement (e.g., promoted ahead or behind peers during

previous promotion boards). Many Officer personnel management decisions in the

Army, particularly consideration for promotions, are based upon an Officer’s year-

group. The parameter di is a relative measure of an Officer’s year-group, such that

di = yi −miny (6)

and

dmax = max
i
{di|i ∈ O}. (7)

We use the relative differences to determine for each assignment its preference

over the set of Officers. We define cij as the coefficient expressing the preference of

assignment j for Officer i.
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cij ,



s(dmax − di)
10

, j ∈ AD,

sdi, i ∈ OKD and j ∈ AKD,

s(dmax − di), i ∈ OB and j ∈ AB,

0, i ∈ OB and j ∈ AB,

(8)

where s is a scaling constant equal to the size of the set O, or s = |O|. The scalar s is

chosen so that the small maximum preference range of assignments is not dominated

by the larger number of preferences expressed by Officers.

Decision Variables.

We define the decision to assign an Officer i ∈ O to an assignment j ∈ A as:

xij ,


1, if Officer i is matched with assignment j,

0, otherwise.

(9)

We refer to the entire two-dimensional list, or matrix of decisions, as the matching

given by X. Since both matrices and sets of possible solutions are traditionally

represented by capital letters, for clarity we denote the larger set of all possible

matchings from which X is drawn as the universal set U such that X ∈ U .

Objectives.

We define several objectives for a matching of Officers to assignments. These

functions map any match X to a real-valued measure. The first function measures

match quality with respect to the utilization of KD assignments, the second function

measures quality with respect to Officer preferences, and the third function measures

the stability of a match by giving the number of blocking pairs. The fourth function
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measures quality with respect to assignment preferences.

Objective 1: Maximize KD Opportunity.

f1(X) =
∑

i∈OKD

∑
j∈AKD

yixij. (10)

To optimize the available promotion opportunity of Officers, we prioritize the uti-

lization of open key and developmental assignments to their fullest. A desired match-

ing will assign non-KD complete Officers to KD assignments, further prioritizing those

in the oldest year groups who are in closer proximity to their next promotion oppor-

tunity (i.e. those with the greatest need). Transformed for a minimization, Equation

(10) uses the summed year-group values of all Officers requiring KD assignment that

are matched with a KD assignment. Notice that if an Officer needing a KD assign-

ment is matched to a broadening assignment, it contributes no value to the objective

function. Likewise, the assignments of KD-complete Officers have no bearing on this

value beyond the missed opportunity costs of occupying a KD assignment in lieu of

an Officer who needs it.

Objective 2: Officer Preferences.

f2(X) ≈XP =
∑
i∈O

∑
j∈A

xijpij. (11)

Equation 11 measures the quality of a matching by using the preference information

of each Officer and the decision matrix X. Minimizing this quantity seeks the greatest

number of Officers their highest rated assignments, taking into account the varying

preferences that Officers may have. As discussed both in Section 1.4, and in the

definition of P above, this approximation is subject to error because the measurement
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of ordinal preferences imposes a linear scale onto the values collected.

Objective 3: Stability.

f3(X) =
{

The number of blocking pairs contained in the matching X
}
. (12)

The third objective function measures the stability present in a solution. As noted

in Section 2.2, a matching is stable if the number of blocking pairs is zero. Stability

of a matching X is measured by the number of blocking pairs in that matching. The

fewer the number of blocking pairs, the greater the stability of a match. To maximize

stability we minimize the number of blocking pairs.

Objective 4: Assignment Preference.

f4(X) ≈ CX =
∑
i∈O

∑
j∈A

cijxij. (13)

This last objective function describes the overall assignment preference level for

the matching, in a manner similar to the calculation of Officer preference in Objective

2.

3.4 Linear Programming Base Model.

The Linear Programming Model seeks to minimize the collective regret of Officers

using an objective function similar to the measure of Social Welfare [10] discussed

in Chapter 2. In this sense, we seek to minimize the regret of an Officer incurred

by her assigned posting compared to that which would be personally optimal herself.

Furthermore, we seek to simultaneously minimize the regret of assignments when
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their assigned Officer is compared with the entire set. Of course, this optimization is

subject to some additional constraints, representing the equities and requirements of

the Army.

lex min
X∈U

(
f1(X), f2(X) + f4(X)

)
subject to

∑
i∈O

xij = 1, ∀j ∈ A,∑
j∈A

xij = 1, ∀i ∈ O,

xij ∈ {0, 1}, ∀i ∈ O, j ∈ A,

(14)

By exploiting knowledge of the problem, specifically the structure of the set par-

titions and their influence on f1, and using the approximation of f2 in Equation (11)

we can reformulate the multiobjective lexicographic minimization in Equation (14)

into the optimization of Equation (15). We solve for the best attainable value of KD

assignment utilization, k∗, and then add a constraint to Equation (15) using k∗ as a

constant.

min
X∈U

∑
i∈O

∑
j∈A

xij(pij + cij)

subject to
∑
i∈O

xij = 1, j ∈ A,∑
j∈A

xij = 1, ∀i ∈ O,∑
i∈OKD

∑
j∈AKD

yixij = k∗,

xij ∈ {0, 1}, ∀i ∈ O, j ∈ A.

(15)
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where k∗ = min
Z∈U

∑
i∈OKD

∑
j∈AKD

yizij

subject to
∑
i∈O

zij = 1, j ∈ A,∑
j∈A

zij = 1, ∀i ∈ O,

zij ∈ {0, 1} ∀i ∈ O, j ∈ A.

(16)

The LP is modeled using the numpy [30] and gurobipy [31] packages of the Python

programming language and solved using Gurobi’s version 7.0.1 mixed integer pro-

gramming solver [13]. Since the lower level program (16) is independent from the

decision variables of the upper-level program in (15), k∗ need only be found once and

substituted into subsequent formulations as a parameter.

In solving the LPs above, we employ two methods. The initial solution for both LP

variants is the same. The cold start LP does not “seed” the solver with these initial

decision variable values, but rather will start from an initial feasible basis, such as

a heuristically derived solution. The warm start LP uses the values of the decision

variables in the initial solution as a guide, attempting to redress any infeasibility while

searching for the new optimal value [31]. Since these methods attain an optimal

solution we can state that, for identical instance, the two methods may diverge if

and only if alternative optimal solutions exist. While alternative optimal solutions

might exist in cases of a pair of Officers with identical preferences over some subset of

assignments, additional solutions with the same objective value might also arise from

more complex chain of “swaps” involving a larger number of Officers, but resulting in

the same objective function value. We hypothesize that there should be no difference,

on average, between the solutions obtained via these two methods.
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3.5 Stable Marriage Model

As in the case of the LP, we extracted from the exemplar data the assignment

preferences for each Officer. To properly represent Army priorities, we constructed a

preference listing for each assignment over the set of available Officers. The resulting

partially ordered set, or poset, of Officers will complement the preferences of the

Officers over assignments. The GS deferred acceptance algorithm, or Stable Marriage

Algorithm, is then used with these two posets to identify stable matchings.

In a traditional optimization formulation, as shown in Equation (17), we seek to

first optimize the distribution of KD assignments, or f1, and then generate a stable

solution by minimizing f3. The Stable Marriage Algorithm by design minimizes the

number of blocking pairs by generating a stable solution, which by definition contains

no blocking pairs. However, it is likely that there exist multiple matchings without

blocking pairs, and the algorithm will only return one of multiple alternative optima.

lex min
X∈U

(
f1(X), f3(X)

)
subject to

∑
i∈O

xij = 1, ∀j ∈ A,∑
j∈A

xij = 1, ∀i ∈ O,

xij ∈ {0, 1}, ∀i ∈ O, j ∈ A.

(17)

The Stable Marriage Algorithm requires preference information for both assign-

ments and Officers. While the preferences of Officer over assignments are available,

we must construct the preferences for each assignment over the group of Officers such

that the “Needs of the Army” represented by f1 are taken into account. To do this,

we construct a preference relation for each assignment based upon the nature of the

assignment. While we could account for several factors, in this example our primary

concern is the distribution of KD assignments.
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For i, j ∈ O and an assignment in AKD, we establish a weak preference relation

such that i � j if either of the following conditions are true:

• Officer i requires KD and Officer j does not; i ∈ OKD ∧ j ∈ OB,

• Officer i has a lower or “older” year group than Officer j; yi < yj.

If both Officers have the same KD status and year group, then the assignment is

indifferent between i and j, or i ∼ j. Just as with ties among Officer preferences,

there is a lack of a strict ordering (i.e. there are ties) within the preferences of the

assignments.

We similarly construct a relation for Officers for assignments in AB, preferring

KD-complete Officers (OB) to those requiring KD (OKD) without prejudice to year

group. While we model assignments in AD with no preference, alternatively they

could model some expressed preference with respect to how long or how often an

Officer has previously been required to change duty locations, given by tour equity

or date of their last move
(
i.e., permanent change of station (PCS)

)
.

It should be noted that additional preference information for assignments, whether

for certain experiences, skill identifiers, or manner of past performance could be easily

incorporated at this point. Whether it is to ensure a nominative position is filled by

a high performing officer or to match an assignment with a mechanized unit with an

Officer with similar experience as a junior Officer, the options are limited only by the

availability of data for use by assignment managers to implement a desired manning

strategy.

The Stable Marriage Algorithm is then applied to determine a stable solution,

with Officers proposing to assignments. Each Officer is then paired with the best

assignment he might obtain without either another Officer being worse off. Assum-

ing all Officers expressed their true preferences, then by the definition of stability
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there should not exist any allowable “trade” among Officers that would improve the

outcome for both Officers.

Since Kimbrough and Kuo [10]observed that solution characteristics might vary

among stable matchings, we test several variants of the GS algorithm by varying how

the proposing “male” or Officer is picked, whether the initial solution is used, and

whether and how the best of multiple applications is used. The variants selected for

test are shown in Table 6. For those that are described as randomized, the choice

of the male or Officer at each step in the algorithm is by a random selection from

the currently unmatched Officers. The lexicographic method simply chooses the next

Officer in the list.

3.6 Perturbations to the Models

After the procedures in Sections 3.4 and 3.5 are applied, the resulting matching

is stored as the incumbent solution and the respective model subjected to a combi-

nation of three possible alterations. Two additional possible changes are discussed

and shown to be isomorphic to the three under study. For ten iterations at each

combination, zero to five random instances of each additional constraint are gener-

ated. The incumbent solutions are then compared with the final solutions from the

Table 6. Variants of SMA and LP under test

Variant Abbreviation

SMA, Randomized with Lowest Objective Value of 5 iterations SMA-5o
SMA, Randomized with Fewest Changes of 5 iterations SMA-5r
SMA, Randomized with Fewest Changes of 10 iterations SMA-10r
SMA, Randomized with Fewest Changes of 30 iterations SMA-30r
LP, Cold Start LP-C
LP, Warm Start LP-W
SMA, Lexicographic SMA-Lex
SMA, Lexicographic with Warmstart SMA-Lex/Warm
SMA, Randomized with Warmstart SMA-Warm
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updated model and the number of differences between the solutions are counted. In

application, this approach of randomly selecting possible scenarios is known in the

stochastic optimization field as a scenario optimization [32]. In addition to providing

an immediate benefit of examining the Officer assignment decision under conditions

of uncertainty, this approach also provides the opportunity to empirically compare

the performance of the stable marriage heuristic with traditional linear programming

techniques with respect to solution quality and stability.

Assignment Restriction.

An assignment restriction changes the model such that a subset of A becomes

infeasible for that Officer. In practice, such an occurrence happens when life events

cause an Officer to enroll in a program such as the Exceptional Family Member

Program (EFMP) or the Married Army Couples Program (MACP). These programs

may limit the assignment of an Officer, even to a desired posting. Another possibility

might be duty limitations due to injury or illness preventing assignment to some units,

such as Airborne status or those deploying in support of overseas operations.

Directed Assignment.

A directed assignment occurs when a particular Officer is directed to fill a particular

assignment. Whether due to a by-name request (BNR) from a particular unit or the

intervention of a senior decision maker into the process, these assignments take into

account information that may not be routinely available to assignment managers.

Rejected Match.

Due to how Officers are assigned to Joint and Interservice assignments, also called

Joint and nominative assignment, some units may exert influence over which Officer
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they receive by effectively exercising a “veto” power. After an assignment manager

“nominates” an Officer, a unit with such power undertakes its own review or interview

process before approving or rejecting the nomination.

Unforecasted Assignment.

New assignment requirements sometimes occur. This might be due to rapidly un-

folding situations, such as the establishment of a new joint task force headquarters

(e.g., combat operations). Life events of an Officer in a high-priority unit, such as a

new medical condition or legal action, might necessitate a reassignment. Depending

upon priority and timing, the replacement might need to occur in the current as-

signment cycle. In application, this situation need not be explicitly modeled due to

the presence of “dummy” assignments in the algorithms. Without any further pref-

erence information available for either Officers or assignments, there is no structural

difference between an unforecasted assignment and the absence of an assignment. In

practice, some degree of preference might be inferred, but the model examined herein

assumes that no such information is available and does not explicitly model such

information. However, should such information become available, it could be easily

incorporated into the model.

Removal of an Officer.

Life events, such as medical concerns, legal trouble, or personal career decisions

might impact the availability of an Officer for reassignment. Despite many media

portrayals, the Army’s processes account for these in its reassignment decisions. Of-

ficers might retire in-lieu of a reassignment, or request a stabilization so that a high

school-aged child does not have to move to a new school for their senior year. In ap-

plication, this situation is analogous to a directed assignment described above, except
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that the Officer is directed to a “dummy” assignment. As modeled, that Officer is

effectively removed from the process.
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IV. Analysis

4.1 Robustness of Approaches with Respect to Changes in Solution

C
h
an

ge
s

Approach Variant

Variant Abbreviation

LP, Cold Start LP-Cold
LP, Warm Start LP-Warm
SMA, Randomized with Fewest Changes of 10 iterations SMA-10r
SMA, Randomized with Fewest Changes of 30 iterations SMA-30r
SMA, Randomized with Lowest Objective Value of 5 iterations SMA-5o
SMA, Randomized with Fewest Changes of 5 iterations SMA-5r
SMA, Lexicographic SMA-Lex
SMA, Lexicographic with Warmstart SMA-Lex,Warm
SMA, Randomized with Warmstart SMA-Warm

Figure 2. Robustness (Changes to Incumbent Solution) By Method

Figure 2 shows the mean number of changes to an incumbent solution for a number

of randomly chosen perturbations, where each of the three types are equally likely

to occur. In this formulation, lower is better. The numeric values, along with 95%

Scheffé confidence intervals [33], are shown in Table 7. All contrasts between the

mean robustness of each methods are statistically significant, with the exception of

the two LP methods. This indicates that for any two variants, except for the two

LP methods, there is sufficient evidence to reject a null hypothesis that there is no

difference between the mean robustness of the two approaches. For the warm and
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cold start LPs, there is insufficient evidence to reject the assertion that there is no

difference in mean robustness.

Table 7. Mean Number of Changes with 95% Scheffé Confidence Intervals [33]

95% Scheffé CI
Groups Solution Method for Mean Changes

a SMA, Randomized with Best Objective of 5 iterations 84.40± 6.94
b SMA, Randomized with Fewest Changes of 5 iterations 76.52± 5.06
c SMA, Randomized with Fewest Changes of 10 iterations 73.80± 4.73
d SMA, Randomized with Fewest Changes of 30 iterations 70.51± 4.12

e
LP 62.31± 8.18
LP with Warm Start 61.64± 8.24

f SMA, Lexicographic 48.89± 8.76
g SMA, Lexicographic with Warmstart 10.79± 5.12
g SMA, Randomized with Warmstart 10.39± 4.76

4.2 Computational Effort

In Table 8, we examine computational effort, as measured by elapsed time, on

an Intel Core i5-7200U CPU (2 Cores) with hyperthreading enabled running Ubuntu

16.10 in an Anaconda 4.2-managed Python 2.7.12 environment. Of note, most SMA

iterations can be run in the same time as an LP and, given the context of the Army

Assignment problem, there is no practical difference between even the smallest ob-

served value (0.271 seconds) and the largest (7.39 seconds). The lack of practical

difference, however, likely would not extend to larger scale problem instances and

certainly is not generalizable to other problems.

4.3 Similarities of Cold Start and Warm Start Linear Programming

Further examining the previously noted similarity of the two LP methods, Table

9 highlights the further similarity of the two LP methods with respect to objective

function value and the average choice of assignment given to Officers. With such
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Table 8. Computational Effort as Elapsed Time with 95% Scheffé Confidence Inter-
vals [33]

Groups Solution Method Mean Time(s)±95% Scheffé CI

a SMA, Fewest Changes of 30 iterations 3.0069± 0.121
b SMA, Fewest Changes of 10 iterations 1.1289± 0.034

c
SMA, Best Objective of 5 iterations 0.6592± 0.021
SMA, Fewest Changes of 5 iterations 0.6592± 0.022

d
LP, Warm Start 0.6453± 0.020
LP, Cold Start 0.6404± 0.022

e SMA, Lexicographic 0.2811± 0.009

f
SMA, Randomized with Warmstart 0.2744± 0.006
SMA, Lexicographic with Warmstart 0.2682± 0.014

high similarity in solution quality, computational effort, and number of changes, it is

reasonable to conclude that there is no significant difference, on average, between the

two variations of Linear Programming.

Table 9. Solution Quality of LP Methods, with 95% Scheffé Confidence Intervals [33]

Variant Mean Objective Average Officer Preference

LP Warm Start 70960± 265 16.03598± 0.769
LP Cold Start 70980± 301 16.08598± 0.784

4.4 Regression of Perturbation Type against the Number of Changes to

Initial Solution

Relaxing the assumption that each type of perturbation under test occurs with

equal frequency, we build a regression model to estimate the change attributable to

each factor. The three factors are the number of restrictions, directed assignments

and rejected assignments added after deriving the initial solution. We developed two

models, one based upon the data observed for warm start LP and the other based

upon the “best of five, changes focused” randomized SMA. The two regression models

show that, while the two methods in general respond similarly to directed and rejected

assignments, the algorithms respond much differently to the addition of assignment
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restrictions. Lastly, the difference in intercepts reinforce observations noted in Figure

2, namely that for this dataset the LP method requires fewer changes on average than

SMA.

LP Method.

We regress the warm start LP data against the observed changes to our initial

solution. To remove non-constant variance in the response, we apply a Box-Cox

transformation [34] to the number of changes, resulting in an estimated λ-parameter

of 1.9. A model with all interaction terms was iteratively reduced in R [35], yield-

ing a model with no interaction terms with all terms significant at the 0.001 level. A

Breusch-Pagan [36] test failed to reject a null hypothesis of homoscedasticity. Variance

inflation factors, approximately one, indicate there are no issues with multicollinearity

of the data. While there are three potentially large (> 3) externally studentized resid-

uals, in such a large data set three observations this extreme match those expected

from a t-distribution [35].

changesLP-Warm = (1000.03 + 83.63nrestrictions + 81.52ndirected + 58.70nrejected)
1
1.9 (18)

Equation (18) shows the regression model, where nrestrictions is the number of

assignment restrictions added, ndirected is the number of directed assignments and

nrejected is the number of assignments rejected in the incumbent matching. For LPs,

restrictions are the largest contributor to changes. LP is least robust to restrictions,

and more robust to rejected matches.
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SMA Method.

Fewest changes of five iterations with randomized selection (SMA-

5r).

Similarly, we construct a regression model for the “best of five” SMA method

where the best is selected by lowest number of changes rather than objective function

value. Box-Cox [34] suggested a λ-value of 2, accounting for non-constant variance in

the response. We developed a model with the three factors and no interaction. The

model and all terms were significant at the 0.05 level or better. A Breusch-Pagan test

[36] failed to reject the null hypothesis of homoscedasticity, and as expected there was

no indication of multicollinearity within the factors. Also, as with the LP regression

model, the number of large externalized residuals falls within the expected range [35].

changesSMA-5r =
√

2625.60− 11.56nrestrictions + 82.63ndirected + 61.95nrejected (19)

Equation (19) shows the regression model for the SMA algorithm, where nrestrictions

is the number of assignment restrictions added, ndirected is the number of directed

assignments, and nrejected is the number of assignments rejected in the incumbent

matching. A larger intercept shows the generally lower performance of this algo-

rithm, but the interesting observation is the reduction in changes with an increase in

assignment restrictions. The model predicts a decrease in the number of changes, on

average, for an increase in the number of additional restrictions.

Warm Start (SMA-Warm).

For the responses of the warm start SMA, the Box-Cox method [34] suggested

a transform with a λ-value of 0.7, resulting in the relationship shown in Equation
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(20). Residual analysis and application of the Breusch-Pagan test [36] highlighted no

problems with model adequacy.

changesSMA-Warm = (0.734 + 0.072nrestrictions + 1.22ndirected + 0.98nrejected)
10
7 (20)

The coefficient value for the number of restrictions (nrestrictions) was statistically

insignificant (p = 0.395). This means that based upon the observed data, there is

insufficient evidence to reject an assertion that restrictions do not cause changes to the

model, or that the true coefficient value is zero. Intuitively, we would expect a solution

to change only with the probability that the restriction impacts the assignment made

within the initial solution. Therefore, we reason a priori that restrictions impact the

number of changes, but the magnitude of the effect is small. However, it is possible

that the true value may even be negative, confirming the observation made for a cold

starting SMA.

An empirical justification for retaining the term nrestrictions results from examina-

tion of the predicted residual error sum of squares, or PRESS, statistics for models

both with and without the term for the number of restrictions [35]. In Table 10 we see

that there is a small decline in the sum of squares of the PRESS residuals, indicating

some small increase in predictive power in the expanded model. Given our a priori

reasoning above, and the observed PRESS values, we determined that the model in

Equation (20) is appropriate.

Table 10. Prediction Residual Error Sum of Squares (PRESS) for SMA-Warm Regres-
sion Model

Model PRESS Statistic

Restrictions, Directed and Rejected Assignments 78,817.37
Directed and Rejected Assignments 78,849.71
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4.5 Solution Quality

Table 11 displays the average objective function value, f2 + f4 for each of the

solution methods. We note that the use of lexicographic selection in the SMA, which

appears to provide much of the reduction in changes, imposes a cost with respect to

solution quality.

Table 11. Solution Quality with Groupings from 95% Scheffé Confidence Intervals [33]

Objective Value
Treatment Mean 95% CI Group∗

SMA-Lex 72780 a
SMA-Lex,Warm 72460 b

SMA-5o 72400 bc
SMA-5c 72380 c

SMA-10c 72380 c
SMA-30c 72360 c

SMA-Warm 72240 d
LP-C 70980 e

LP-W 70960 e
∗Treatments sharing a letter are statistically equivalent

4.6 Pareto-Optimality of Solution Approaches

Based upon the observed data, a trade-off appears to exist between reductions

in the number of changes and reductions in objective function value. Lexicographic

SMA and warm start LP are both Pareto-optimal approaches, in this bi-objective

comparison of quality and robustness. For the two objectives of quality and robust-

ness, an approach is Pareto-Optimal if changing approaches to improve one objective

necessitates a decrease with respect to the other objective [37].

To compare the LP-Warm, SMA-Lex and SMA-Warm results, we construct a

conditioning plot of the data as shown in Figure 3. Here the data for each method

are plotted side-by-side, with solution quality (i.e., the objective function value) on
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Figure 3. Plot of Efficient Frontier for Mean Solution Quality and Mean Robustness

the vertical axis and the number of changes observed on the horizontal axis. The

lower left corner of each plot is the utopia point, optimizing both solution robustness

and solution quality.

By inspection we can see that the LP method stochastically dominates the lexi-

cographic SMA approach, in that we expect to perform at least as well if not better

with respect to both measures when choosing LP over this SMA variant. With this

observation, we can exclude this variant of SMA from the set of Pareto-Optimal ap-

proaches [37]. A comparison of the LP-Warm and SMA-Warm approaches shows

that, in order to improve over the quality of SMA-Warm, we must change to an the

LP-Warm approach that sacrifices robustness, and vice versa. Figure 4 simplifies the

graph to examine only the means of each measure.

As both measures are formulated for minimization, a Utopian point is the closest

point to the origin. On the graph, a notional Utopian point is noted for reference in

the bottom left. We can clearly observe that the lexicographic variant (SMA-Lex)
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lays on average behind the efficient frontier established by the two warm starting

methods (SMA-Warm and LP-Warm). The relative weighting by a decision maker of

the importance of quality over robustness will determine which side of the trade-off

is preferable.

Figure 4. Plot of Solution Quality versus Robustness for Three Variants, with the
Utopian Point Annotated
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V. Conclusions and Future Research

The Army’s most important weapon is its people. Where the other ser-
vices may man equipment, what we do is equip the Soldiers, the women
and men who are the Army. That’s where talent management comes into
play.

–LTG James McConville, 9 January 2017
Deputy Chief of Staff for Personnel

Headquarters, United States Army [38]

5.1 Conclusion

Pareto-Optimality of Approaches.

Based upon the observed data and our analysis of results in Section 4.6, we con-

clude for this problem instance that cold start SMA approaches do not appear Pareto-

Optimal with respect to solution quality and robustness. More information is required

from the decision-maker to examine the trade-off between the two measures, to as-

certain is how much of a loss in solution quality should be sacrificed for solution

robustness. If greater weight is given to robustness, then a warm-started SMA ap-

proach might increase robustness at the cost of quality. If instead solution quality is

preferred, then a warm-started LP formulation is more appropriate.

Robustness Impacts of Differing Constraints on Approaches.

Assignment Restrictions.

The regression analysis performed in Section 4.4 appears to indicate that for SMA

approaches robustness, as measured by the number of changes required to an incum-

bent matching after the inclusion of additional model constraints, appears to increase

with an increase in the number of additional assignment restrictions. In other words,
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increasing restrictions in a sparse preference structure appears to positively influence

solution robustness in SMA approaches. This reaction can be contrasted with the

observation that assignment restrictions are the most impactful constraint on LP

formulations.

Directed and Rejected Assignments.

Directed assignments yielded the greatest impact over all SMA variants, whereas

rejected assignments yielded the lowest impact on LP approaches. The impact of

these observations depend upon an understanding of the relative frequency of these

events occurring. Further observations or discussions with assignment managers may

help inform follow-on analysis.

Development of an Officer-Assignment Matching Market.

Given the pervasive requirement to adjust the various methods used by Officers to

communicate their preferences, discussed further in Appendix A, we note the benefit

likely raised by automating the collection of Officer preference data through any

standardized process with any form of integrated data validation. Such a process will

likely reduce many transcription errors that might unnecessarily cloud the problem

and reduce the quality of the resulting solution.

Development of a formal matching market system may ease the adoption of SMA

by improving the availability of preference information elicited directly from Army

leaders, without requiring an explicit mathematical modeling of a preference func-

tion for each assignment. The additional input leaders would have in determining

the Officers that they receive might motivate an increase the preference information

available to any algorithm used. If these preferences are collected as ordinal prefer-

ences with a low degree of indifference, then it may benefit from the application of
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the GS algorithm.

5.2 Future Research

Will a Reduction in Assignment Indifference Result in an Improvement

of Stochastic SMA approaches?

One characteristic of the problem under consideration is that the preference infor-

mation for assignments over the set of all Officers is more sparse than the preference

information elicited from the Officers. While this is partially an artifact of the avail-

able data, additional research could identify how a more granular preference structure

might be reasonably developed. These might include the use of information regarding

an Officer’s manner of performance or the use of preference information elicited from

units regarding Officer traits available in Army databases.

A new hypothesis from this observation is that, if preference information for the set

of Assignments contained less indifference, the performance gap between LP and SMA

approaches may be reduced. Follow-on work may test this hypothesis, the results of

which can better inform when it might preferable to utilize any one methodology.

What potential impact does the use of ordinal preference structures

have relative to the actual or theoretical preferences of Officers?

As noted in Chapter 2, there is scant literature regarding the impact of our study’s

assumption of a linear preference relationship of assignments by all Officers. Left to

future investigation is an assessment of the full impact of this assumption, as well

as a full accounting of the costs to gather the additional information. A compari-

son, either empirically or theoretically, of the marginal changes in solution quality

between ordinal and ratio preference information can inform the potential benefits of

increased information. This might be weighed against an accounting or more rigorous
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estimation of the costs associated with eliciting a large number of preference func-

tions. Once informed with a better understanding of the potential costs and benefits,

Army leaders can make an informed decision regarding the continued use of ordinal

information.

Relaxation of Pre-emptive Goal Program.

While the use of a lexicographic preference order in our LP formulation enabled its

transformation into a relatively simple bi-level program, it is possible that a decision-

maker’s goals might not be so strict, allowing for some flexibility in the allocation of

KD-Assignments. Developing a “Nearly Pre-emptive Goal Programming” approach

would allow relatively minor deviations from the optimal value designated as k∗ in

our formulation. Given more flexibility, this modified LP approach might further

improve the overall quality of the matching attained and better reflect the decision

process of Assignment Managers.

Alternative Program Formulations.

A mathematical program might be formulated to minimize the number of devia-

tions to an incumbent solution, or at least to incorporate and appropriately weight

their number within the objective. Such a formulation may be able to provide ad-

ditional approaches by which uncertainty could be addressed. A comparison to the

methods described herein could prove enlightening, as a method to produce additional

Pareto-optimal approaches to the problem.

Probabilistic Analysis of Scenario Frequency.

While this study examines the impact of the three scenario-based changes, it is

likely that these scenarios do not occur with equal probability. The collection of data
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and additional study can inform how often each scenario occurs for the various popu-

lations, and whether it might change the approach recommended for some weighting

of quality and robustness.
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Appendix A. Data Cleaning

Reviewing the data received by the United States Army Human Resources Com-

mand (HRC), we discovered multiple instances of errors that might complicate any

interpretation of Officer preferences. We summarize the various types of errors, how

they are handled, and recommend an automated data validation schema appropriate

for distributed and unsupervised data collection. We received an assignment work-

sheet with the collected ordinal preferences from a single assignment cycle for a single

group of Officers.

We identified and characterized artifacts in the data as multiple preference values,

skipped preference values, incomplete preferences, assignments annotated as “N/A”

and a single Officer who did not express any preferences at all. Overall, about one in

three Officer preferences contained at least one error or potential ambiguity, as noted

in the first bar of Figure 5. The relative frequency of errors in the remaining bars

does not sum to the overall error rate, as many preferences contained more than one

type of error.

Figure 5. Observed Data Cleaning Errors
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Most errors were likely typos, resulting from multiple iterations of copying and

editing a list before submitting a final preference list to the assignment manager for

manual transfer to the master copy. The coincidence of skipped numbers and multiple

entries is intuitive. For instance, if there are two of one number and another number is

later skipped, the final preference value will match the number of assignments, making

it easier to overlook the compound error. While the majority of these artifacts were

not proximate, we viewed that there was not an immediate concern and accept the

values, as-is.

Multiple entries for a single preference value occur when an Officer assigns the same

number to multiple assignments. We interpret this artifact as indifference between

the two assignments and update our preference structure accordingly. While most

of these errors might be rather innocuous, there is still the possibility for serious

error. For example Officer 103 noted two assignments as her number 3 choice, but

skipped the preference value 30. It is possible that, by assuming indifference between

those assignments, we do not accurately model the true preferences of an Officer who

possibly intended one to be assigned 30.

Incomplete preferences occur when no number at all was assigned to one or more

assignments. We separately account for a single incident where not a single preferences

was noted, but this is but an extreme case of incomplete preferences. Otherwise, the

most extreme case was an Officer who submitted preferences over only 17 assignments.

We also examined several cases where the Officer annotated “N/A” rather than an

integer value. Upon further investigation, there was no information that indicated the

Officer might be precluded from such an assignment. When no preference information

is available, either by a blank or “N/A” entry, we assume that the Officer is indifferent

between all such entries and append these to our preference structure accordingly.

Manual inspection and identification of these artifacts, as well as confirming any

48



interpretation via an individual contact with each Officer would likely be time and cost

prohibitive. While an automated tool might help to identify such artifacts and even

facilitate communication, the prevention of such errors would alleviate the problem

at the source.
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Appendix B. Code Documentation

assignmentFunction(initialSolution, allowableChanges, methodFlag): assignment-

Function returns a matching provided by a desired solution method (set by method-

Flag) given a starting solution that is to be randomly altered according to the allow-

ableChanges parameter. Solution time is also returned. assignmentFunction requires

Python 2.7 with the ability to import the gurobipy, pandas and numpy packages (also

inheriting integer division behavior from Python3).

Function inputs:

– initialSolution: a list of integer assignment indices such that initialSolution[i] =

j iff Officer i is assigned to assignment j.

– allowableChanges: a list of integers representing the number of randomly chosen

changes to the original assignment problem. For each change type i, j changes

will be made iff allowableChanges[i]=j.

allowableChanges[0]: Assignment Restrictions. Generate lists of assign-

ments for allowableChanges[0] number of Officers such that the inclusion

of any selected assignment for that Officer results in an infeasible match-

ing. This change models widely impacting personal situations such as the

Exceptional Family Member Program (EFMP), enrollment in the Mar-

ried Army Couples Program (MACP), or deploy-ability restrictions such

as medical profiles, or other restrictions on assignment with a wider impact

on assignment feasibility.

allowableChanges[1]: Directed Assignments. Randomly select allowableChanges[1]

number of Officers and directs their assignment to a randomly selected as-

signment. This models the influence of a by-name request (BNR), or the
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executive judgment of senior decision-makers acting upon additional infor-

mation not routinely available to assignment managers.

allowableChanges[2]: Rejected Match. Randomly selects allowableChanges[2]

number of Officers and determines if their current match (that is, the ap-

propriate entry in initialSolution) is infeasible. This models the post-hoc

influence of some individual assignments over the results of the Officer

assignment process. Prototypically joint and nominative positions, these

assignments can exercise a “veto” over the choice of a service’s assignment

manager.

– method flag: Designates the method by which the changed/new assignment

problem instance is solved.

methodFlag = 0:SMAWarmstart Returns a matching found by using a

Stable Marriage Algorithm, starting with the values in initialSolution.

methodFlag = 1:SMAColdstart Returns a matching found by using a Sta-

ble Marriage Algorithm, without specifying an initial solution.

methodFlag = 2:LPWarmstart Returns a matching found by using a Lin-

ear Programming model, with a warm-start using the values in initialSo-

lution.

methodFlag = 3:LPColdstart Returns a matching found by using a Linear

Programming model, without specifying an initial solution.

Function outputs: The function returns an object (of a “Solution” class or a

tuple- depending upon implementation) consisting of:

– finalSolution: a list of integer assignment indices such that initialSolution[i] =

j iff Officer i is assigned to assignment j.
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– computationTime: a floating point representation of the computational effort

expended on evaluation of the changed assignment problem. The exact deter-

mination of this value will depend upon implementations of timing routines in

the underlying operating system.
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Appendix C. Python Code

The following code was written for Python [39] using numpy [30] and gurobipi [13].

import numpy as np

import pandas as pd

import pickle as pkl

#two helper functions to save and load python objects

def save obj(obj, name ):

with open(’data/’+ name + ’.pkl’, ’wb’) as f:

pkl.dump(obj, f, pkl.HIGHEST PROTOCOL)

def load obj(name ):

with open(’data/’ + name + ’.pkl’, ’rb’) as f:

return pkl.load(f)

#Solution Class provides means of return more than one value

class Solution:

def init (self, fS, rSF, c): #add msg?

self.finalSolution = fS

self.resultStatusFlag = rSF

self.changes= c

self.obj = 0.0

self.feasible = 1

def str (self): #when called via print

return str([self.finalSolution , self.obj, self.feasible, self.changes])

def repr (self): #when called interactively

return str([self.finalSolution , self.obj, self.feasible, self.changes])
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def setup():

LPGetYearGroup()

SMAGetPrefs()

LPGetC()

#Generates ’p.pkl’ file containing Officer preference

#dictionary only needs to be run once on a machine

#setup for use as a stack (pop/append) in reverse preference

#order. Stack contains sublists for each level of

#indifference (weak preference order)

def SMAGetPrefs():

import numpy as np

import pandas as pd

p kd = {}

p b = {}

KD Off= range(74,160)

B Off = range(0, 74)

KD Ass= range(0,71)

B Ass = range(73,139)

D Ass = range(139, 162)

KD D Ass = B Ass[0:15]

Officers = list(set().union(KD Off ,B Off))

Assignments = list(set().union(KD Ass , B Ass , D Ass))

raw pref = pd.read csv(’RawPreferences2.csv’, dtype=’str’)

#worst case, 72nd choice

raw pref.fillna(max(KD Ass)+1,inplace=True)
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for o in Officers:

p kd[o] = map(int,raw pref.iloc[o,KD Ass])

for i in range(0,2):

p kd[o].append(999) #missing assignments 71/72

for a in KD D Ass:

p kd[o].append(a)

p b[o] = map(int,raw pref.iloc[o,B Ass])

for a in D Ass:

p b[o].append(a)

save obj(p kd , ’p kd’)

save obj(p b , ’p b’)

Officers = list(set().union(KD Off ,B Off))

Assignments = list(set().union(KD Ass , B Ass , D Ass))

r kd = {}

r b = {}

raw pref = pd.read csv(’RawPreferences2.csv’, dtype=’str’)

for o in Officers:

r=raw pref.iloc[o,KD Ass]

r.fillna(max(KD Ass)+1,inplace=True) #worst case scenario

r kd[o] = map(int,r)

r = raw pref.iloc[o,B Ass]

r.fillna(max(B Ass)+1,inplace=True)

r b[o] = map(int,r)

for a in D Ass:

r b[o].append(0)

save obj(r kd , ’r kd’)

save obj(r b , ’r b’)
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#Generates ’y.pkl’ file containing yeargroup list.

#Only needs to be run once on a machine

def LPGetYearGroup():

d = pd.read csv(’OfficerData.csv’)

y = d[’YG’]

y = y.values.tolist()

save obj(y, ’y’)

yg={}

for o, year in enumerate(y):

try:

yg[year].append(o)

except (KeyError, NameError):

yg[year]=[o]

save obj(yg,’yg’)

#Generates ’C.pkl’ file containing cost coefficient list.

#Only needs to be run once on a machine

def LPGetC():

KD Off= range(74,160)

B Off = range(0, 74)

KD Ass= range(0,71)

B Ass = range(73,139)

D Ass = range(139, 162)

y = load obj(’y’)

years = {}

for i,year in enumerate(y):

years[i] = (y[i]−min(y))
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Officers = list(set().union(KD Off ,B Off))

Assignments = list(set().union(KD Ass , B Ass , D Ass))

C = {}

prefs ={}

officer preference = pd.read csv(’OfficerPrefs.csv’)

for o in Officers:

prefs[o] = officer preference[str(o)]

for a in Assignments:

if a in list(D Ass):

C[(o,a)] = 1.6 ∗ (max(years)−years[o])

elif not np.isnan(prefs[o][a]):

if o in KD Off and a in KD Ass:

penalty = 160∗years[o]

elif o in KD Off and a in B Ass:

penalty = 160 ∗(max(years)−years[o])

elif o in B Off and a in KD Ass:

penalty = 160

elif o in B Off and a in B Ass:

penalty = 0

else:

pass

C[(o,a)] = prefs[o][a] + penalty

else: #mildly infeasible , no KD prefs avail

C[(o,a)]= 999

save obj(C,’C’)

#Base SMA Code

def SMA(allowableChanges):
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import random as rnd

sol = Solution([0,0], 1, 0)

#sets

KD Off= range(74,160)

KD Ass= range(0,71)

B Off = range(0, 74)

B Ass = range(73,139)

D Ass = range(139, 162)

Officers = list(set().union(KD Off ,B Off))

#Assignments = list(set().union(KD Ass , B Ass))

Assignments = list(set().union(KD Ass , B Ass , D Ass))

#Match KD Assignments

KD D Ass = B Ass[0:15]

p kd = load obj(’p kd’)

p b = load obj(’p b’)

yg = load obj(’yg’)

y = load obj(’y’)

smaA = load obj(’smaA’)

KD OtoA = {}

BOtoA = {}

res list = {}

#allowableChanges[0]: Assignment Restrictions

availO = set(Officers)

restrictions = rnd.sample(list(availO), allowableChanges[0])

for restriction in restrictions:

res list[restriction] = rnd.sample(Assignments , int(rnd.uniform

(.05,.1) ∗ len(Assignments)))

for ass in res list[restriction]:
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if ass in KD Ass and restriction in KD Off:

p kd[restriction][ass] = max(Assignments) + 2

elif ass in B Ass:

p b[restriction][ass−min(B Ass)] = max(Assignments) + 2

else:

pass

#allowableChanges[1]: Directed Assignment

taken = []

x = {}

availO −= set(restrictions)

availA = set().union(KD Ass , B Ass , D Ass)

directeds = rnd.sample(list(availO), allowableChanges[1])

for directed in directeds:

#if directed in KD Off:

#KD Off.remove(directed)

#else:

#B Off.remove(directed)

#x[directed]=rnd.sample(list(availA), 1)[0]

if directed in KD Off:

x[directed]=rnd.sample(list(set(availA)−set(B Ass)), 1)[0]

KD OtoA[directed] = x[directed]

else:

x[directed]=rnd.sample(list(set(availA)−set(KD Ass)), 1)[0]

BOtoA[directed] = x[directed]

taken += [x[directed]]

availA −= set(taken)

#allowableChanges[2]: Rejected Match

availO −= set(directeds)
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rejects = []

while len(rejects) < allowableChanges[2]:

reject = rnd.sample(list(availO), 1)[0]

if int(smaA[reject]) != 999:

rejects.append(reject)

availO.remove(reject)

if reject in KD Off and smaA[reject] in KD Ass:

p kd[reject][smaA[reject]] = max(Assignments)+2

else: #if reject in KD Off and smaA[reject] in B Ass:

#p b[reject].remove(smaA[reject])

p b[reject][smaA[reject]−min(B Ass)] = max(Assignments) + 2

del availO

del availA

#Starting KD matching

opref = {}

apref = {}

unmatched = list(set(KD Off)−set(directeds)) #listing of unmatched

officers

noKD = [] #bookkeeping for KD Officers not getting a KD Assignment

#kdNotTaken = list(set().union(set(KD Ass),set(KD D Ass) )− set(taken))

#for o in KD Off:

level= {}

for assignment in KD Ass:

apref[assignment] = {}

preference = 0

for year in sorted(yg.keys()):

preference += 1

for officer in yg[year]:
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apref[assignment][officer] = preference

for assignment in KD D Ass:

apref[assignment] = {}

for officer in KD Off:

apref[assignment][officer] = −y[officer]

for officer in KD Off:

opref[officer] = p kd[officer]

level[officer] = 0

if officer not in directeds:

KD OtoA[officer] = −1

while unmatched:

officer = rnd.choice(unmatched)

#officer = unmatched[0] #lexicographic

if level[officer] > 100:

noKD.append(officer)

break

try:

possibility = opref[officer].index(level[officer])

opref[officer][possibility]=−1

except ValueError: #level not found in opref.index()

level[officer] +=1

continue

if officer in directeds or possibility in list(taken):

continue

try:

incumbent = KD OtoA.keys()[KD OtoA.values().index(possibility)]
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except ValueError:

incumbent = −1

if officer not in rejects or possibility != smaA[officer]:

possibilitypref = apref[possibility]

else: #don’t assign a reject to his incumbent match.

continue

#no incumbent

if incumbent == −1:

unmatched.remove(officer)

KD OtoA[officer] = possibility

if possibility in B Ass:

noKD.append(officer)

#if assignment prefers officer to incumbent

elif possibilitypref[officer] < possibilitypref[incumbent]:

KD OtoA[incumbent] = −1

if possibility in B Ass:

noKD.remove(incumbent)

noKD.append(officer)

unmatched.append(incumbent)

KD OtoA[officer] = possibility

unmatched.remove(officer)

else: #incumbent is preferred , do nothing

pass

del p kd #garbage collect

del yg

#Setup for Broad. Matching

62



opref = {}

apref = {}

level = {}

B OtoA ={}

p b = load obj(’p b’)

unmatched = list(set(noKD + B Off)−set(directeds))

for o in unmatched:

opref[o] = p b[o]

if officer not in directeds:

B OtoA[o] = −1

level[o] = 0

for assignment in B Ass:

apref[assignment]={}

for officer in unmatched:

if officer in B Off:

apref[assignment][officer] = 1

else:

apref[assignment][officer] = 2

for assignment in D Ass:

apref[assignment] = {}

for officer in unmatched:

apref[assignment][officer] = −y[officer]

while unmatched:

officer = rnd.choice(unmatched)

#officer = unmatched[0] #lexicographic

if level[officer] > max(Assignments)+2:

print B OtoA

print str(level[officer]) +">"+str(max(Assignments)+2)
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raise ValueError

try:

possibility = opref[officer].index(level[officer])+min(B Ass)

opref[officer][possibility−min(B Ass)]=−1

except ValueError: #level not found in opref.index()

level[officer] +=1

continue

try:

incumbent = B OtoA.keys()[B OtoA.values().index(possibility)]

except ValueError:

incumbent = −1

if officer not in rejects or possibility != smaA[officer]:

possibilitypref = apref[possibility]

else: #don’t assign a reject to his incumbent match.

continue

if officer in directeds or possibility in list(taken):

continue

#no incumbent

if incumbent == −1:

unmatched.remove(officer)

B OtoA[officer] = possibility

if possibility in KD D Ass:

noKD.append(officer)

#if assignment prefers officer to incumbent

elif possibilitypref[officer] < possibilitypref[incumbent]:
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B OtoA[incumbent] = −1

if possibility in KD D Ass:

noKD.remove(incumbent)

noKD.append(officer)

unmatched.append(incumbent)

B OtoA[officer] = possibility

unmatched.remove(officer)

#incumbent is preferred , do nothing

else:

pass

for o in KD Off:

if o in noKD and o not in directeds:

x[o] = B OtoA[o]

elif o not in directeds:

x[o] = KD OtoA[o]

for o in B Off:

if o not in directeds:

x[o] = B OtoA[o]

sol.finalSolution = []

Officers = list(set().union(KD Off ,B Off))

for i in Officers:

if x[i] in D Ass or x[i] == −1:

sol.finalSolution.append(int(999))

else:

sol.finalSolution.append(x[i])

for restriction in restrictions:
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if x[restriction] in res list[restriction]:

sol.feasible = 0

for reject in rejects:

if x[reject] == smaA[reject]:

sol.feasible = 0

sol.resultStatusFlag = 0

#save obj(sol.finalSolution , ’smaA’) #saved first time, used later

sol.changes = [sum(i != j for i, j in zip(sol.finalSolution , smaA))][0]

return sol

ef af(methodFlag=1, allowableChanges=[0,0,0]): #don’t need init solution

import numpy as np

import gurobipy as gp

import random as rnd

sol = Solution([0,0], 1, 0)

#Because Python doesn’t have select−case

if methodFlag == 0: #SMA"Warmstart" −− may drop

print "not implemented"

elif methodFlag == 1: #SMAColdstart

sol = bestOfN(30, allowableChanges) #Changed for various

methodologies

elif methodFlag == 2: #LPWarmstart

kd m = gp.Model()

y = load obj(’y’)

lpA = load obj(’lpA’)

#sets
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KD Off= range(74,160)

B Off = range(0, 74)

KD Ass= range(0,71)

B Ass = range(73,139)

D Ass = range(139, 162)

D KD Ass = range(139,154)

Officers = list(set().union(KD Off ,B Off))

KD Assignments = list(set().union(KD Ass ,D KD Ass))

Assignments = list(set().union(KD Ass , B Ass , D Ass))

#handlemods/random perturbations

#allowableChanges[0]: Assignment Restrictions

restrictions = rnd.sample(Officers, allowableChanges[0])

A r = {}

for restriction in restrictions:

A r[restriction] = rnd.sample(Assignments , int(rnd.uniform(.05,.1) ∗ len

(Assignments)))

#allowableChanges[1]: Directed Assignment

A d = {}

availO = set(Officers)

availO −= set(restrictions)

directeds = rnd.sample(list(availO), allowableChanges[1])

availA = set(Assignments)

for directed in directeds:

availA −= set(A d.values())

A d[directed] = rnd.sample(list(availA), 1)

A d[directed]=A d[directed][0]

#allowableChanges[2]: Rejected Match
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availO −= set(directeds)

rejects = []

while len(rejects) < allowableChanges[2]:

reject = rnd.sample(list(availO), 1)[0]

if int(lpA[reject]) != 999:

rejects.append(reject)

availO.remove(reject)

#Phase I, slot KD Offs/objective f 1

x={}

for o in KD Off:

for a in KD Assignments:

x[(o,a)] = kd m.addVar(vtype=gp.GRB.BINARY, obj = y[o],

name="O{0:03d}".format(o) + "A{0:03d}".format(a))

kd m.ModelSense = gp.GRB.MINIMIZE #MINIMIZE

for a in KD Assignments:

kd m.addConstr(gp.quicksum(x[(o,a)] for o in KD Off),gp.GRB.

EQUAL ,1)

for o in KD Off:

if o in list(restrictions):

if not list(set(A r[o])&set(KD Assignments)):

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

list(set(A r[o])&set(KD Ass))), gp.GRB.EQUAL

,1)

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,0)

68



elif o in list(directeds):

if A d[o] in list(KD Ass):

kd m.addConstr(x[(o,A d[o])], gp.GRB.

EQUAL ,1)

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,0)

elif o in list(rejects):

if int(lpA[o]) in list(KD Ass):

kd m.addConstr(x[(o,int(lpA[o]))], gp.GRB.EQUAL

,0)

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

kd m.update()

kd m.setParam(’OutputFlag’, False)

#kd m.write(’lp.mps’)

kd m.optimize()

try:

y star = kd m.objVal
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except:

return Solution(−1∗ np.ones(160), −1, −1)

del kd m

C = load obj(’C’)

x = {} #reallocating memory

bd m = gp.Model()

for o in Officers:

for a in Assignments:

x[(o,a)] = bd m.addVar(vtype=gp.GRB.BINARY, obj=

C[(o,a)],name="O{0:03d}".format(o) + "A{0:03

d}".format(a))

bd m.ModelSense = gp.GRB.MINIMIZE #−1

for a in Assignments:

bd m.addConstr(gp.quicksum(x[(o,a)] for o in

Officers),gp.GRB.EQUAL ,1)

for o in Officers:

if o in list(restrictions):

bd m.addConstr(gp.quicksum(x[(o,a)] for a in A r[o]), gp

.GRB.EQUAL ,1)

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

elif o in list(directeds):

bd m.addConstr(x[(o,A d[o])], gp.GRB.EQUAL ,1)

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

elif o in list(rejects):
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bd m.addConstr(x[(o,int(lpA[o]))], gp.GRB.EQUAL ,0)

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

else:

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

# bd m.addConstr(gp.quicksum(gp.quicksum(y[o]∗x[(o,a)] for a in

KD Ass) for o in Officers), gp.GRB.LESS EQUAL , 1.0015∗ y star)

bd m.addConstr(gp.quicksum(gp.quicksum(y[o]∗x[(o,a)] for a in

KD Ass) for o in Officers), gp.GRB.LESS EQUAL , y star)

bd m.setParam(’OutputFlag’, False)

bd m.update()

bd m.optimize()

sol.finalSolution = np.zeros(160)

#try:

for v in bd m.getVars():

if v.x >0:

if int(v.varName[−3:])>=139 or int(v.varName[−3:]) in

[71,72]:

sol.finalSolution[int(v.varName[1:4])] = 999

else:

sol.finalSolution[int(v.varName[1:4])] = int(v.varName

[−3:])

sol.finalSolution = list(sol.finalSolution.astype(int))

sol.resultStatusFlag = 0 #Good Execution

#save obj(sol.finalSolution , ’lpA’) #saved locally first time

and referenced later
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sol.changes = sum(i != j for i, j in zip(sol.finalSolution , lpA)

)

sol.obj = bd m.objVal

elif methodFlag == 3: #LPColdstart

kd m = gp.Model()

y = load obj(’y’)

lpA = load obj(’lpA’)

#sets

KD Off= range(74,160)

B Off = range(0, 74)

KD Ass= range(0,71)

B Ass = range(73,139)

D Ass = range(139, 162)

D KD Ass = range(139,154)

Officers = list(set().union(KD Off ,B Off))

KD Assignments = list(set().union(KD Ass ,D KD Ass))

Assignments = list(set().union(KD Ass , B Ass , D Ass))

#handlemods

#allowableChanges[0]: Assignment Restrictions

restrictions = rnd.sample(Officers, allowableChanges[0])

A r = {}

for restriction in restrictions:

A r[restriction] = rnd.sample(Assignments , int(rnd.

uniform(.05,.1) ∗ len(Assignments)))

#allowableChanges[1]: Directed Assignment

A d = {}
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availO = set(Officers)

availO −= set(restrictions)

directeds = rnd.sample(list(availO), allowableChanges[1])

availA = set(Assignments)

for directed in directeds:

availA −= set(A d.values())

A d[directed] = rnd.sample(list(availA), 1)

A d[directed]=A d[directed][0]

#allowableChanges[2]: Rejected Match

availO −= set(directeds)

rejects = []

while len(rejects) < allowableChanges[2]:

reject = rnd.sample(list(availO), 1)[0]

if int(lpA[reject]) != 999:

rejects.append(reject)

availO.remove(reject)

#Phase I, slot KD Offs/objective f 1

x={}

for o in KD Off:

for a in KD Assignments:

x[(o,a)] = kd m.addVar(vtype=gp.GRB.BINARY, obj = y[o],

name="O{0:03d}".format(o) + "A{0:03d}".format(a))

kd m.ModelSense = gp.GRB.MINIMIZE #MINIMIZE

for a in KD Assignments:
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kd m.addConstr(gp.quicksum(x[(o,a)]

for o in KD Off),gp.GRB.EQUAL ,1)

for o in KD Off:

if o in list(restrictions):

if not list(set(A r[o])&set(KD Assignments)):

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

list(set(A r[o])&set(KD Ass))), gp.GRB.EQUAL

,1)

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,0)

elif o in list(directeds):

if A d[o] in list(KD Assignments):

kd m.addConstr(x[(o,A d[o])], gp.GRB.

EQUAL ,1)

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,0)

elif o in list(rejects):

if int(lpA[o]) in list(KD Ass):

kd m.addConstr(x[(o,int(lpA[o]))], gp.GRB.EQUAL

,0)

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)
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else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

else:

kd m.addConstr(gp.quicksum(x[(o,a)] for a in

KD Assignments),gp.GRB.EQUAL ,1)

kd m.update()

kd m.setParam(’OutputFlag’, False)

#kd m.write(’lp.mps’)

kd m.optimize()

try:

y star = kd m.objVal

except:

return Solution(−1∗ np.ones(160), −1, −1)

#Continue with phase2, slot everyone− obj f 2

C = load obj(’C’)

x = {} #reallocating memory

bd m = gp.Model()

for o in Officers:

for a in Assignments:

x[(o,a)] = bd m.addVar(vtype=gp.GRB.BINARY, obj=C[(o,a)

],name="O{0:03d}".format(o) + "A{0:03d}".format(a))

bd m.ModelSense = gp.GRB.MINIMIZE #−1

for a in Assignments:

bd m.addConstr(gp.quicksum(x[(o,a)]

75



for o in Officers),gp.GRB.EQUAL ,1)

for o in Officers:

if o in list(restrictions):

bd m.addConstr(gp.quicksum(x[(o,a)] for a in A r[o]), gp

.GRB.EQUAL ,1)

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

elif o in list(directeds):

bd m.addConstr(x[(o,A d[o])], gp.GRB.EQUAL ,1)

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

elif o in list(rejects):

bd m.addConstr(x[(o,int(lpA[o]))], gp.GRB.EQUAL ,0)

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

else:

bd m.addConstr(gp.quicksum(x[(o,a)] for a in Assignments

),gp.GRB.EQUAL ,1)

bd m.addConstr(gp.quicksum(gp.quicksum(y[o]∗x[(o,a)] for a in

KD Ass) for o in Officers), gp.GRB.LESS EQUAL , y star)

bd m.setParam(’OutputFlag’, False)

bd m.update()

bd m.optimize()

sol.finalSolution = np.zeros(160)

try:

for v in bd m.getVars():
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if v.x >0:

if int(v.varName[−3:])>=139 or int(v.varName

[−3:]) in [71,72]:

sol.finalSolution[int(v.varName[1:4])] = 999

else:

sol.finalSolution[int(v.varName[1:4])] = int

(v.varName[−3:])

sol.finalSolution = sol.finalSolution.astype(int

)

sol.resultStatusFlag = 0 #Good Execution

#save obj(sol.finalSolution , ’lpA’) #saved

locally first time and referenced later

sol.changes = sum(i != j for i, j in zip(sol.

finalSolution , lpA))

sol.obj = bd m.objVal

except:

sol = Solution(−1∗ np.ones(160), −1, −1)

else: #Error

print "Parameter Error: Invalid methodFlag"

sol = Solution(−1∗ np.ones(160), −1, −1)

if methodFlag == 1:

C = load obj(’C’)

sol.obj = 0

for i,j in enumerate(sol.finalSolution):

if j == 999:

pass
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else:

try:

sol.obj = sol.obj + C[(i,j)]

except KeyError: #infeasible solution

print (i,j)

sol.obj = −1

return sol

def eval(matching):

C = load obj(’C’)

eval = 0

for i,j in enumerate(matching):

if j == 999:

pass

else:

try:

eval = eval + C[(i,j)]

except KeyError: #infeasible solution

sol.obj = −1

return eval

def getRanks(matching):

KD Ass= range(0,71)

B Ass = range(73,139)

r kd = load obj(’r kd’)

r b = load obj(’r b’)

ranks = []

78



for i,j in enumerate(matching):

if j == 999:

pass

else:

try:

if j in B Ass:

ranks.append(r b[i][j−73])

elif j in KD Ass:

ranks.append(r kd[i][j])

else:

pass

except KeyError:

ranks = [0]

if len(ranks) >0:

return ranks

else:

return [0]

def bestOfN(N,aC):

x={}

bestObj = float("inf")

bestPtr = 0

for i in range(0,N):

x[i] = SMA(aC)

#if x[i].obj <bestObj and x[i].obj>0: #FOR BESTOF OBJ

if x[i].changes <bestObj and x[i].changes>−1:

bestPtr = i
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bestObj = x[i].changes

return x[bestPtr]
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Appendix D. Storyboard

81



Bibliography

1. “HRC mission and vision.” https://www.hrc.army.mil/content/HRC%20Mission%

20and%20Vision. Accessed: 2016-11-20.

2. “DOD personnel, workforce reports & publications.” https://www.dmdc.osd.mil/

appj/dwp/dwp_reports.jsp. Accessed: 2016-11-20.

3. R. Gall, “Seamands takes command of US Army Human Re-
sources Command.” https://www.dvidshub.net/news/165634/

seamands-takes-command-us-army-human-resources-command. Accessed: 2017-01-
09.

4. R. R. Hill, V. Chopra, B. Nadkarni, W. Cotsworth, and G. Schroeder, “Examining the
stable marriage algorithm paradigm for agent-based optimization applications in sup-
port of defense planning challenges,” in IIE Annual Conference. Proceedings, (Houston,
TX), Institute of Industrial Engineers, May 2003.

5. G. E. Box, “Robustness in the strategy of scientific model building,” Robustness in
statistics, vol. 1, pp. 201–236, 1979.

6. C. T. Lopez, “New personnel system key to ferreting out untapped soldier
talent.” https://www.army.mil/article/176296/new_personnel_system_key_to_

ferreting_out_untapped_soldier_talent. Accessed: 2017-01-09.

7. R. Ahuja, T. Magnanti, and J. Orlin, Network flows: theory, algorithms, and applica-
tions. Prentice Hall, 1993.

8. M. Bazaraa, J. Jarvis, and H. Sherali, Linear Programming and Network Flows. Wiley,
2010.

9. B. C. Dean and N. Swar, “The generalized stable allocation problem,” in International
Workshop on Algorithms and Computation, pp. 238–249, Springer, 2009.

10. S. O. Kimbrough and A. Kuo, “On heuristics for two-sided matching: Revisiting the
stable marriage problem as a multiobjective problem,” in Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pp. 1283–1290, ACM, 2010.

11. C.-P. Teo, J. Sethuraman, and W.-P. Tan, “Gale-shapley stable marriage problem revis-
ited: Strategic issues and applications,” Management Science, vol. 47, no. 9, pp. 1252–
1267, 2001.

12. B. Aldershof and O. M. Carducci, “Stable marriage and genetic algorithms: a fertile
union,” Journal of Heuristics, vol. 5, no. 1, pp. 29–46, 1999.

13. “Gurobi optimizer features and benefits.” http://www.gurobi.com/products/

features-benefits. Accessed: 2016-10-29.

14. M. Fırat, C. Hurkens, and A. Laugier, “Stable multi-skill workforce assignments,” An-
nals of Operations Research, vol. 213, no. 1, pp. 95–114, 2014.

82



15. D. Gale and L. Shapley, “College admissions and the stability of marriage,” The Amer-
ican Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

16. D. G. McVitie and L. B. Wilson, “The stable marriage problem,” Communications of
the ACM, vol. 14, no. 7, pp. 486–490, 1971.

17. “Recursive procedures (visual basic).” https://msdn.microsoft.com/en-us/

library/81tad23s.aspx. Accessed: 2016-10-15.

18. D. F. Manlove, “The structure of stable marriage with indifference,” Discrete Applied
Mathematics, vol. 122, no. 1, pp. 167–181, 2002.

19. A. E. Roth, “The evolution of the labor market for medical interns and residents: a
case study in game theory,” The Journal of Political Economy, pp. 991–1016, 1984.

20. “The Sveriges Riksbank prize in economic sciences in memory of
Alfred Nobel.” http://www.nrmp.org/wp-content/uploads/2013/08/

The-Sveriges-Riksbank-Prize-in-Economic-Sciences-in-Memory-of-Alfred-Nobel1.

pdf. Accessed: 2016-10-29.

21. A. E. Roth, “Deferred acceptance algorithms: history, theory, practice, and open ques-
tions,” International Journal of Game Theory, vol. 36, no. 3, pp. 537–569, 2008.

22. “How game theory helped improve New York citys high school ap-
plication process.” http://www.nytimes.com/2014/12/07/nyregion/

how-game-theory-helped-improve-new-york-city-high-school-application-process.

html?_r=0. Accessed: 2016-10-29.

23. A. Abdulkadirolu, P. A. Pathak, A. E. Roth, and T. Snmez, “The Boston public school
match,” The American Economic Review, vol. 95, no. 2, pp. 368–371, 2005.

24. B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content delivery,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 3, pp. 52–66, 2015.

25. H. Naeem and A. Masood, “An optimal dynamic threat evaluation and weapon schedul-
ing technique,” Knowledge-Based Systems, vol. 23, no. 4, pp. 337–342, 2010.

26. A. M. Wylie, “Optimization of rated officer staff assignments,” Master’s thesis, Air
Force Institute of Technology, 2007.

27. J. Lepird, “Position paper on a next generation air force personnel assignment system,”
tech. rep., United States Air Force, 2016.

28. T. Sonmez and T. B. Switzer, “Matching with (branch-of-choice) contracts at the United
States Military Academy,” Econometrica, vol. 81, no. 2, pp. 451–488, 2013.

29. U. S. A. C. A. Command, “Talent management concept of operations for
force 2025 and beyond.” http://usacac.army.mil/pubs/Force-2025-and-Beyond-Human-
Dimension. Accessed: 2017-02-10.

83



30. S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A structure for
efficient numerical computation,” Computing in Science Engineering, vol. 13, pp. 22–30,
March 2011.

31. “Gurobi optimizer example tour.” http://www.gurobi.com/documentation/7.0/

examples.pdf. Accessed: 2016-10-29.

32. R. S. Dembo, “Scenario optimization,” Annals of Operations Research, vol. 30, no. 1,
pp. 63–80, 1991.

33. F. deMendiburu, “agricolae tutorial.” http://tarwi.lamolina.edu.pe/

~fmendiburu/. Accessed: 2017-1-12.

34. W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. New York: Springer,
fourth ed., 2002. ISBN 0-387-95457-0.

35. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2016.

36. J. Fox and S. Weisberg, An R Companion to Applied Regression. Thousand Oaks CA:
Sage, second ed., 2011.

37. M. Ehrgott, Multicriteria optimization. Springer Science & Business Media, 2006.

38. A. Dilanian and T. Akiwowo, “A new talent management program: An interview
with lt. gen. james mcconville.” https://www.army.mil/article/179877/a_new_

talent_management_program_an_interview_with_lt_gen_james_mcconville. Ac-
cessed: 2017-01-09.

39. E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for
Python,” 2001–. [Online; accessed 2016-10-22].

84



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD–MM–YYYY)

23-03-2017 Master’s Thesis

3. DATES COVERED (From — To) 
Sep 2016 — Mar 2017

A SCENARIO-BASED PARAMETRIC ANALYSIS OF STABLE
MARRIAGE APPROACHES TO THE ARMY OFFICER

ASSIGNMENT PROBLEM

Ferguson, Matthew D., MAJ, U.S. Army

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-17-M-128

United States Army Human Resources Command
1600 Spearhead Division Ave
Fort Knox, KY 40121
COMM 502-613-6391
Email: nicholas.r.paul.mil@mail.mil

AHRC

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This paper compares linear programming and stable marriage approaches to the assignment problem under conditions of
uncertainty. Robust solutions should exhibit reduced variability in the presence of one or more additional constraints.
Several variations of each approach are compared with respect to solution quality, as measured by the overall social
welfare among Officers and Assignments, and robustness as measured by the number of changes after a number of
randomized perturbations. We examine the contrasts between these methods in the context of assigning Army Officers
among a set of identified assignments. Additional constraints are modeled after realistic scenarios faced by Army
assignment managers, with parameters randomized. The Pareto efficient approaches, relative to these measures of quality
and robustness, are identified and subjected to a regression analysis. The coefficients of these models provide insight into
the impact the different scenarios under study, as well as inform any trade-off decisions between Pareto-optimal
approaches.

Optimization, Stable Marriage, Bipartite Matching, Assignment, Personnel, Human Resources, Army

U U U U 96

Dr. R. Hill, AFIT/ENS

(937) 255-6565, x7469; Raymond.Hill@afit.edu

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.


	Air Force Institute of Technology
	AFIT Scholar
	3-23-2017

	A Scenario-Based Parametric Analysis of Stable Marriage Approaches to the Army Officer Assignment Problem
	Matthew D. Ferguson
	Recommended Citation


	tmp.1517246870.pdf.afjoN

